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Abstract. We apply methods of computable structure theory [AK00, EG00] to study ef-
fectively closed subgroups of S∞. The main result of the paper says that there exists an
effectively closed presentation of Z2 which is not the automorphism group of any computable
structure M . In contrast, we show that every effectively closed discrete group is topologically
isomorphic to Aut(M) for some computable structure M . We also prove that there exists an
effectively closed compact (thus, profinite) subgroup of S∞ that has no computable Polish
presentation. In contrast, every profinite computable Polish group is topologically isomorphic
to an effectively closed subgroup of S∞. We also look at oligomorphic subgroups of S∞; we
construct a Σ1

1 oligomorphic group in which the orbit equivalence relation is not uniformly
HYP. Our proofs rely on methods of computable analysis, techniques of computable structure
theory, elements of higher recursion theory, and the priority method.

The study of computable presentations of topological groups originated in computable field
theory [MN79] and was mainly driven by Nerode’s interest in algorithmic aspects of Krull
theory. Working under the supervision of Nerode, La Roche [LR81] proved that the corre-
spondence between computable algebraic number field extensions and profinite groups is uni-
formly effective, in the sense that will be clarified later. Quite interestingly, the algorithmic
techniques developed in [LR81] allowed La Roche to prove a theorem on free profinite groups
that was new even in the purely algebraic (non-computable) setting, see [Jar74] for the earlier
and a weaker purely algebraic result. Based on the work of La Roche, Smith [Smi81, Smi79]
initiated the study of algorithmic presentations of profinite groups in their own right, i.e. not
in the context of effective Galois theory.

Such investigations in computable topological groups have not been restricted to profinite
groups (see., e.g., [GR93]), but the general theory of computable Polish groups is still in
its infancy. Recently there has been an increasing interest in computable aspects of Polish
and Banach spaces [PER89, BHW08, Mel13, McN15] and, consequently, in computable Polish
groups [MM, Mel]. Many aspects of computable Polish groups are related to computable struc-
ture theory [AK00, EG00] and computable Banach space theory [PER89]. Such connections
are often quite subtle. For example, it turns out that many classical results of computable
structure theory have simpler proofs in the more general setting of a computable Polish group
action, see [MM]. On the other hand, the study of Pontryagin Duals of computable Polish
abelian groups enjoys applications of non-trivial effective algebraic results, see [Mel]. It seems
that effective algebra and computable topological group theory are two adjacent pieces of a
bigger puzzle. This paper contributes to the general framework proposed in [Mel13] that is
focused on establishing further technical connections between computable structure theory
and computable analysis, see also [MN16, MN13, MM, GMKT, McN15, MS, Mel].

Recall that a countably infinite and discrete algebraic structure (e.g., a countable field of
characteristic 0) is computable if its domain is ω and its operations and relations are Turing
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computable. Our main goal is to investigate automorphism groups of computable algebraic
structures. For this purpose we introduce a new notion of an effectively closed group. (Our
second main result will imply that the notion below is indeed new.)

Definition 0.1. We say that a subgroup G of S∞ is effectively closed (or Π0
1 for short) if there

is an effectively closed subset P of ωω such that G = P ∩ S∞. An effectively closed presen-
tation, or a Π0

1-presentation, of a group is an effectively closed subgroup of S∞ topologically
isomorphic to the group.

Automorphism groups of computable algebraic structures are clearly effectively closed. It is
well-known that every closed subgroup of S∞ is equal to the automorphism group of some
countable algebraic structure upon ω, see [Gao09]. It is natural to ask:

Is every effectively closed group equal to Aut(C) for some computable C?
We will see that the answer to this question is negative, which seems somewhat counterintu-
itive. The reader perhaps suspects that the isomorphism type of any effectively closed sub-
group of S∞ witnessing the negative answer should be, in some sense, non-trivial. Remarkably,
already the two-element cyclic discrete group Z2 has a “bad” effectively closed presentation.
On the other hand, Z2 is (topologically) isomorphic to Aut(C) for some computable C.

Theorem 0.2.

(1) There exists an effectively closed presentation of the two-element cyclic group Z2 such
that G 6= Aut(C) for any computable structure C.

(2) Every effectively closed discrete group is topologically isomorphic to Aut(C) for some
computable structure C.

The main difficulty in the proof of Theorem 0.2(1) is nesting strategies on top of each other
and not losing the property of being a subgroup of S∞. We leave open whether Theorem 0.2(2)
can be extended to non-compact effectively closed groups.

One could also argue that Definition 0.1 is natural in its own right; effectively closed sets play
a significant role in recursion theory, for some recent applications see [BC08, Rei08, HK14]. It
could be the case that the notion is actually equivalent to one of the already existing notions
restricted to closed subgroups of S∞. We compare Definition 0.1 with the mentioned above
notions of a computable Polish group [MM, Mel] and a recursive profinite group [LR81, Smi81].
(The formal definitions will be given in the preliminaries.) Every recursive profinite group
is computable Polish, but there are computable Polish profinite groups with no recursive
presentation [Mel]. Recall that the profinite groups are exactly the compact subgroups of S∞,
up to topological isomorphism.

Theorem 0.3.

(1) There exists an effectively closed compact (thus, profinite) subgroup of S∞ that has
no computable Polish presentation (therefore, no recursive presentation).

(2) Every profinite computable Polish group is topologically isomorphic to an effectively
closed subgroup of S∞.

In particular, part (1.) of Theorem 0.3 shows that Definition 0.1 gives a new notion, while
part (2.) establishes a connection between Definition 0.1 and computable Polish groups. In
the preliminaries we will use similar ideas to suggest an extension of Definition 0.1 to groups
that are not necessarily totally disconnected. We leave open whether Theorem 0.3(2) can be
extended to arbitrary closed subgroups of S∞.
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To finish the paper we look at the class of oligomorphic groups. There are closed subgroups
G of S∞ for which for every n there are only finitely many G-orbit equivalence classes of n-
tuples. Oligomorphic groups are the automorphism groups of ℵ0-categorical structures. These
structures are homogenous. Thus, if an effectively closed subgroup G of S∞ is oligomorphic,
and equals Aut(M) for some computable structure M , then ∼G will in fact be computable. We
approach the question “how complicated can ∼G be for an effectively closed oligomorphoc G?”
If we could construct an effectively closed oigomorphic group with ∼G not computable, we
would get another example for our main result Theorem 0.2(1). Oligomorphic groups lie at
the other extreme from profinite groups, for which every orbit equivalence class is finite, and
our initial hope was that it might perhaps be easier to handle them. Our intuition was wrong,
but the effective content of oligomorphic groups turned out to be interesting on its own right.

Note that even for Σ1
1 groups, ∼G is Σ1

1; if G is oligomorphic, then for each n, the restriction
of ∼G to n-tuples must be hyperarithmetic. Interetingly enough, this fact lacks uniformity in
the following sense.

Theorem 0.4. There is a Σ1
1, closed oligomorphic subgroup of S∞ for which ∼G is not

hyperarithmetic.

It would be interesting to obtain more information about the effective content of oligo-
morphic groups; in particular, we leave open whether a Π0

1 oligomorphic group can witness
Theorem 0.2(1).

The structure of this paper is as follows. The small preliminary Section 1 contains for-
mal definitions, a description of the natural computable Polish presentation of S∞, and an
equivalent definition of an effectively closed subgroup of S∞ in terms of this presentation. We
arrange proofs according to the used methods. The proof of Theorem 0.3 can be found in
Section 2. Section 3 contains the proof of Theorem 0.2(1), and the proofs of Theorem 0.2(2)
and Theorem 0.4 are in Section 4, respectively.

1. Preliminaries

Throughout this paper we work in the category of topological groups. We only consider
isomorphisms between groups that are both algebraic and topological, i.e., homeomorphisms;
so henceforth “isomorphic” means “topologically isomorphic”.

Definition 1.1. A computable Polish (metric) space is a triple (M,d, (αi)i∈ω), where (M,d)
is a Polish space, the sequence (αi)i∈ω is dense in M , and there exists a uniformly computable
procedure which on input i, j ∈ ω and ε ∈ Q+, outputs a rational r such that |d(αi, αj)−r| < ε.

The points from the dense computable sequence (αi)i∈ω are called special. A ball with a
rational radius and centred in a special point is called basic. Clearly, ωω under the usual
ultrametric forms a computable Polish space. The basic open balls are the usual clopen
neighbourhoods.

Suppose F : X→ Y is a map between computable Polish spaces. The map F is computable
if there exists a uniform procedure which, on input a basic open B ⊂ Y, lists a set of basic
open balls in X whose union is equal to F−1(B). Note that we do not require to list all balls
contained in F−1(B). This approach is equivalent to the definition from, e.g., [Mel13]. Observe
that the product of two (or more) computable Polish spaces is itself computable Polish. The
definition below generalises the old definition of a recursive profinite group [LR81, Smi81] to
arbitrary Polish groups.
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Definition 1.2 ([MM]). A computable Polish presentation of a [second-countable Hausdorff]
topological group G is a computably and completely metrized homeomorphic copy of G upon
which the operations · and −1 are computable.

We now discuss the infinite permutation group S∞ ⊂ ωω. For two permutations σ and τ
of ω, let

D(σ, τ) =
d(σ, τ) + d(σ−1, τ−1)

2
,

where d is the usual ultrametic on ωω. The dense computable subset of S∞ is given by
permutations of ω with finite support. Then (S∞, D) becomes a computable Polish group
which we call the natural Polish presentation of S∞ for reasons that will be explained shortly.

Recall that a closed subset C of a computable Polish space is effectively closed or Π0
1 if there

exists a (Turing) computable enumeration of basic open balls whose union is the complement of
C, and recall Definition 0.1 of an effectively closed subgroup of S∞. It seems quite natural and
certainly useful to define a Π0

1-subgroup based on the natural computable Polish presentation
of S∞ of ωω instead. Luckily these notions coincide.

Proposition 1.3. A group G 5 S∞ is effectively closed (according to Definition 0.1) if
and only if the domain of G is an effectively closed subset of the natural computable Polish
presentation of S∞.

Proof. We prove a bit more. Suppose that U is a basic open subset of ωω. Can we effectively
list basic open subsets of (S∞, D) whose union is equal to S∞ ∩ U? Conversely, given a basic
open V in (S∞, D), can we list basic open sets whose union U has the property U ∩S∞ = V ?
In other words, is the metric D (on S∞) effectively compatible with the usual metric d (on
ωω)?

Claim 1.4. The metricD defined above is effectively compatible with the standard ultrametric
d on ωω.

Proof of Claim. Suppose that a sub-basic open subset U of ωω is specified by a finite partial
map σ. If σ is not injective, then V = ∅. Otherwise, let τ1, τ2, . . . be the effective list of all
possible extensions of σ−1 to an injective map with domain a finite initial segment of ω. Then
the sequence of pairs (τ−1

i , τi), i = 1, 2, . . . corrsponds to a sequence of respective basic open
balls in (S∞, D) whose union we set equal to V . Note that each element of U ∩S∞ belongs to
one of these basic open sets, and thus to V . Conversely, each f ∈ V has a finite approximation
that is consistent with the restriction imposed by U .

Now suppose (σ, σ−1) describes a basic open set V in (S∞, D), where σ is a permutation
of an initial segment of ω. Then the open set U can be taken equal to the collection of all
extensions of σ to an element of ωω. The correspondence is clearly effective. �

Let P be a closed subset of ωω. It follows that we can uniformly pass from the enumeration
of P in ωω to the enumeration of P ∩ S∞ in (S∞, D) and back. �

The proposition above allows us to extend Definition 0.1 to groups that are not necessarily
embeddable into S∞, but we leave this new notion outside the scope of this article.

Definition 1.5 ([LR81, Smi81]). A recursive presentation of a profinite group P is a uni-
formly computable inverse system of finite groups, with surjective maps, whose inverse limit
is isomorphic to P .

It is known that recursively presented profinite groups are exactly the automorphism groups
of computable algebraic number fields over a computable subfield; see [LR81]. As we mentioned
above, every recursive profinite group is computable Polish, but there are computable Polish
profinite groups with no recursive presentation [Mel].
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2. Effectively closed vs. computable Polish

Proof of Theorem 0.3(1). We construct an effectively closed gubgroup of S∞ that has no com-
putable Polish presentation. We will be using the result below:

Fact 2.1 ([Mel], Cor. 1.8). Every computable Polish presentation of a profinite group P can
be transformed into a 0′-computable inverse system F0 ← F1 ← F2 . . ., with surjective maps,
whose limit is isomorphic to P .

For a set S of prime numbers let

PS =
∏
p∈S

Zp,

where Zp is the cyclic group of order p. This group is profinite, as it is the inverse limit of the
groups

∏
p∈S∩n Zp for n < ω.

First we observe that if PS has a computable Polish presentation then S is Σ0
2. To see this,

given such a presentation of PS , by Fact 2.1, we produce a 0′-computable inverse system rep-
resenting the group. By [Mel, Thm.1.9] we can use this to uniformly produce a 0′-computable
presentation – in the sense of computable structure theory – of the discrete countable group⊕

p∈S Zp, which is the Pontryagin dual of P (see the book [Pon66] for more on Pontryagin’s

duality theory). Using the 0′-computable presentation of
⊕

p∈S Zp we can 0′-computably list

the prime orders of elements of the group, showing that S is Σ0
2.

So it suffices, given a Π0
2-complete set S of primes, to build a computable structure M such

that Aut(M) is isomorphic to PS . The structure M will be a graph consisting of infinitely
many disjoint components Cp, one for each prime p. Every Cp will have a loop of length p,

xp0 − x
p
1 − . . .− x

p
p−1 − x

p
0

and every node in the loop will have a [finite or infinite] chain

xpi − c
p
i,1 − c

p
i,2 − . . .

attached to it. The length of the chain depends on our approximation for the Π0
2 predicate

for p. If p /∈ S then this predicate fires for p only finitely many times, say s; in this case, we
make the length of the ith chain equal to s + i. The result is a rigid component. If p ∈ S
then we make each of the p many chains infinite. In this case the automorphism group of the
component will be isomorphic to Zp; each automorphism is determined by the image of xp0,
which could be any xpi .

Because there is no interaction between the components, Aut(M) ∼=
∏
p∈S Aut(Cp) ∼= PS .

This isomorphism is topological as well, because in both copies, the topology is the product
topology where the components Aut(Cp) and Zp are discrete. In other words, in both Aut(M)
and Cp, the sub-basic clopen sets are determined by stating finitely many values for the
automorphism. �

Proof of Theorem 0.3(2). Let P be a computable Polish profinite group. We need to produce
a Π0

1 presentation of P . By Fact 2.1, there is a 0′-recursive presentation of P . We will use a
fully relativised form of the fact below.

Fact 2.2 (LaRoche [LR81]). Every recursively presented profinite group is isomorphic to
Gal(K/N), where K is a computably presented algebraic extension of Q, and N is a com-
putable subfield of K.

In fact, N is a fixed field that corresponds to a natural recursive presentation of the free
profinite group upon countably many generators, see [LR81]; we do not need this fact.
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Fix a 0′-computable field K and a 0′-computable subfield N of K such that Aut(K/N) ∼= P .
Our first step is to obtain a 0′-computable relational structure F (with computable underlying
set and in a computable language) such that Aut(F ) ∼= Aut(K/N) (all isomorphisms are

topological); then we obtain a computable structure F̂ such that Aut(F̂ ) ∼= Aut(F ).
To define F , we start with K; by taking a 0′-computably isomorphic copy we may assume

that N is computable. We name each elements of N by singleton unary predicate and re-
place the field operations by their graphs. This adjustment does not change the topological
isomorphism type of the automorphism group, so Aut(F ) ∼= P .

The next step is a version of Marker’s existential extension which preserves the automor-
phism group.

Proposition 2.3. For any ∅′-computable relational structure A there is a computable struc-
ture B such that Aut(A) and Aut(B) are isomorphic.

Proof. We use the following piece of folklore in computable structure theory.

Fact 2.4 (Folklore, e.g., [GK02]). Let S be a Σ0
2 set. There exists a uniform procedure which,

for each x ∈ ω, outputs a computable copy of ω if x ∈ S, and outputs a computable copy of
ω2 otherwise.

We assume that the underlying set of A is computable, with a computable language. To
define B, fix an n-ary relation of A. For every tuple ā ∈ An we add a new infinite set CPā
of elements (these are pairwise disjoint). We link these “blow ups” of tuples by adding the
relation y ∈ CPx̄ to B. Next, for every tuple ā ∈ An we define a linear ordering LPā of CPā ,
which is isomorphic to ω if P (ā) holds in A, and isomorphic to ω2 otherwise. We add the
relation y1, y2 ∈ CPx̄ & y1 <LP

x̄
y2 to the structre B. It follows from Fact 2.4 that B has a

computable copy.
To show that Aut(A) ∼= Aut(B), we notice that both ω and ω2 are rigid. Thinking of

the underlying set of A as a (computable, definable) subset of B, we observe that every
automorphism of B is determined by its restriction to A, and that every automorphism of A
can be extended to an automorphism of B. Let Φ: Aut(B)→ Aut(A) be this restriction map,
Φ(τ) = τ � A; it is the required isomorphism. To see that it is topological, in the slightly less
immediate direction, we need to check that it is an open map. We take a sub-basic clopen
subset of Aut(B), which is the collection of automorphisms of B which extend some finite
map σ. The point is that σ may mention some elements of B \A. Nonetheless, Φ[σ] is clopen
in Aut(A). If q ∈ CPā is mapped to some p ∈ CP

b̄
, then to the image of [σ] we add the

restriction that ā is mapped to b̄. Since ω and ω∗ are rigid, mapping ā to b̄ is equivalent to
mapping q to p. �

This completes the proof of Theorem 0.3(2). �

3. Proof of Theorem 0.2

We must construct a Π0
1 presentation of Z2 which is not equal to Aut(M) for any computable

structure M (upon the domain of ω).

Informal idea. We explain the basic idea behind diagonalising against the eth partial com-
putable structure Me. We work in ωω. We start by enumerating a certain neighbourhood
into the complement of the presentation, and we say that we “forbid” the neighbourhood. For
some basic ā→ b̄ within this neighbourhood, we must have ā 6→ b̄ in Me, as witnessed by some
first-order atomic φ (unless Me is not total). Then, for some c̄, it should be the case that φ(c̄)
or ¬φ(c̄), and thus necessarily either ā 6→ c̄ or c̄ 6→ b̄. Until this happens the construction will
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proceed in some fixed basic neighbourhood, say ā→ c̄. Once we see φ evaluated on c̄ (if ever)
and says that c̄ 6→ b̄, then we switch to c̄→ b̄ and forbid ā→ c̄. The key here is that we don’t
have to instantly forbid the neighbourhoods, but Me must (unless it is not total). We can put
sub-neighbourhoods of a given neighbourhood into our effectively open set one-by-one. Thus,
we can delay our decision and do the opposite in the group presentation.

The trickier part is nesting the strategies on top of each other. For that, our construction
will proceed only within nested clopen subsets extending x̄↔ ȳ, where x̄ is an initial segment
of ω, ȳ is a permutation of x̄, and the order of this permutation is 2. If we make sure x̄ā 6→ x̄b̄
in Me, we can still fix a tuple ȳc̄ and repeat the basic diagonalisation idea, as above. It must
be the case that either x̄ā 6→ ȳc̄ or ȳc̄ 6→ x̄b̄ is witnessed by some first-order φ, but both events
can be restricted to the neighbourhood x̄ ↔ ȳ. The key here is to choose numbers in c̄ to
be very large, so that both neighbourhoods x̄ā→ ȳc̄ or ȳc̄→ x̄b̄ contain sub-neighbourhoods
isolated by finite permutations of order 2. Then the construction can proceed in one of the
two neighbourhoods. With some care we will end up with a copy of Z2. The rest is handled
by priority nonsense.

Proof. Fix a computable listing (Me)e∈ω of all (partial) computable structures upon the do-
main ω. We construct a Π0

1-subgroup P of the standard copy of S∞, and meet the require-
ments:

P 6= Aut(Me),

for each e. We will also (globally) ensure that P ∼= Z2.
We will identify finite injective partial maps and the respective basic neighbourhoods in S∞

determined by their possible extensions.

Definition 3.1. We say that an injective finite map x̄→ ȳ is nice if it is a finite permutation
of an initial segment of ω and has order 2 (i.e., is an involution). We write x̄↔ ȳ to emphasise
that the map and its respective basic neighbourhood are nice.

All our diagonalisation strategies will be working within (0, 1) ↔ (1, 0). Some of the basic
neighbourhoods will be enumerated into the complement of P . If we enumerate a certain
neighbourhood into S∞ \ P , we say that we forbid the neighbourhood. There will be no
interaction between the process of approximating Idω and the procedure of approximating
the only non-identity element of P .

The basic strategy. We describe the basic diagonalisation strategy, for Me, in isolation. The
strategy will be working within a nice σe = x̄↔ ȳ.

(1) Forbid x̄n→ x̄(n+ 1), where n = lth(x̄). (Note that x̄n→ x̄(n+ 1) will be forbidden
by the construction anyway because of its proximity to Idω, so we could simply wait
until this happens.)

(2) Wait for Me to separate some x̄ā and x̄b̄ extending x̄n and x̄(n + 1) (and having
the same length) by a first-order atomic formula φ. Until this happens, if ever, let
the construction proceed within the nice neighbourhood x̄n ↔ ȳn. One-by-one, start
forbidding all other sub-neighbourhoods σe = x̄↔ ȳ of the form x̄n→ ȳk, k 6= n. (If
Me is total but never gives such a φ, then run a back-and-forth argument on extensions
of x̄n and x̄(n+ 1) to build an automorphism of Me extending x̄n→ x̄(n+ 1).)

(3) If such a φ is found, choose c̄ consisting of very large and fresh numbers (and of the
same length as ā and b̄). Proceed as follows:
(a) Extend the finite partial maps x̄ā → ȳc̄ and ȳc̄ → x̄b̄ to [finite] permutations of

order 2, let N1 and N2 be the respective nice sub-neighbourhoods. Since x̄ ↔ ȳ
is nice, both N1 and N2 belong to x̄↔ ȳ. By the choice of c̄, these permutations



8 NOAM GREENBERG, ALEXANDER MELNIKOV, ANDRE NIES, AND DANIEL TURETSKY

have not been forbidden yet. Stop the process of forbidding sub-neighbourhoods
of x̄↔ ȳ initiated at substep (2).

(b) Forbid what is left of x̄n ↔ ȳn. (Note that weaker priority strategies have been
working in this neighbourhood.)

(c) Start forbidding extensions of N2, one-by-one, and let the construction [i.e., all
the weaker priority strategies] proceed within N1. Forbid all basic open neigh-
bourhoods that do not contain Idω and are disjoint form N1 and N2.

(4) Wait for Me to evaluate φ on ȳc̄, thus witnessing either x̄ā 6→ ȳc̄ or ȳc̄ 6→ x̄b̄ in
Aut(Me). If this never happens, the construction will forever stay inside N1.

Case 1: x̄ā 6→ ȳc̄ in Aut(Me), as witnessed by φ. In this case Aut(Me)∩N1 = ∅. Proceed
as above to (eventually) completely forbid N2 and keep all weaker priority actions
restricted to N1. We will see that in this case the only non-zero element of P is
inside N1.

Case 2: ȳc̄ 6→ x̄b̄ in Aut(Me), as witnessed by φ. In this case stop forbidding N2 and
forbid what is left of N1. Choose a nice τ within N2 and restrict the actions of
all weaker priority strategies to τ . Similarly to Case 1, the only non-zero element
of P will be contained in τ .

Priority and initialisation. We order the strategies according to the index of the partial
computable structure that they are guessing, with smaller indices corresponding to stronger
priority. Every time a basic strategy changes its mind about the neighbourhood in which
the construction [i.e., the weaker priority strategies]should proceed, we initialise all weaker
priority strategies. This is done by picking a new nice neighbourhood σi within the current
neighbourhood of the higher priority strategy in which it allows the construction to proceed.
We also make sure that the diameter of the nice neighbourhood σi of the ith strategy is at
most 2−i (equivalently, we could require that the domain of the finite nice map contains at
least i elements).

Construction. At the beginning of the construction, we will fix a nice basic neighbourhood
of Id (say, (0, 1) ↔ (0, 1)) and some other nice neighbourhood (say, (0, 1) ↔ (1, 0)) disjoint
from it. From this point on, we keep forbidding all (not necessarily nice) sub-neighbourhoods
of (0, 1)↔ (0, 1) that do not contain Idω. We set σ0 = (0, 1)↔ (1, 0).

Verification. We verify some of the key properties of the construction, stage-by-stage.

Claim 3.2. Suppose Me is total, and x̄n 6→ x̄(n+1) Aut(Me) . Then at stage (2) we can find
x̄ā and x̄b̄ extending x̄n and x̄(n + 1), respectively, and a first-order atomic formula φ that
separates x̄ā and x̄b̄.

Proof of Claim. Suppose such x̄ā and x̄b̄ and an atomic φ do not exist. This means that
x̄n → x̄(n + 1) can be extended to an automorphism of Me in a back-and-forth fashion,
contradicting x̄n 6→ x̄(n+ 1). �

We follow the notation and the terminology used in the construction.

Claim 3.3. Suppose substage (3) is reached. Then there exists a tuple c̄ and nice neighbour-
hoods N1 and N2 with the desired properties.

Proof of Claim. Recall that only finitely many basic neighbourhoods can be forbidden at every
stage of the construction. In particular, only finitely many sub-neighbourhoods of σe = x̄↔ ȳ
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of the form x̄n → ȳk, k 6= n, have been enumerated into the complement of the effectively
closed set that we build. In particular, we can choose c̄ so that x̄ā→ ȳc̄ has not been forbidden
yet. Furthermore, choosing c̄ large enough we can ensure that both x̄ā→ ȳc̄ and ȳc̄→ x̄b̄ can
be extended to finite permutations of order 2 which have not yet been forbidden. This is done
by simply setting σ(j) = i if σ(i) = j already, and by declaring σ(k) = k for all other k. �

The importance of choosing c̄ very large in (3) is best illustrated by the simple example
below.

Example 3.4. In the notation as above, suppose x̄ā → x̄b̄ is (0, 1, 2, 7, 11) → (0, 1, 3, 2, 5).
It extends x̄n → ȳ(n + 1) which is (0, 1, 2) → (0, 1, 3). Fix A,B,C very large,
they could be equal to 100, 101, 102. Consider (0, 1, 2, 7, 11) → (1, 0, 101, 102, 103) and
(1, 0, 101, 102, 103) → (0, 1, 3, 2, 5). We could extend them to [finite] permutations, say
to (0, 1, 2, 7, 11, 101, 102, 103) → (1, 0, 101, 102, 103, 2, 7, 11) and (1, 0, 2, 3, 5, 101, 102, 103) →
(0, 1, 102, 101, 103, 3, 2, 5), respectively. Recall we were slowly forbidding all neighbourhoods
in x̄ ↔ ȳ except for extensions of x̄n ↔ ȳn, which is (0, 1, 2) → (1, 0, 2) in this particu-
lar case. But 101 is large enough so that (0, 1, 2, 7, 11) → (1, 0, 101, 102, 103) has not been
forbidden yet. The neighbourhood (1, 0, 2, 3, 5, 101, 102, 103)→ (0, 1, 102, 101, 103, 3, 2, 5) has
not been forbidden since 102 is large enough. We could easily extend each of these finite
maps to permutations of ω � 103 of order 2 by making all the rest i < 103 stable under
the permutation. This will give us nice extensions of (0, 1, 2, 7, 11)→ (1, 0, 101, 102, 103) and
(1, 0, 101, 102, 103) → (0, 1, 3, 2, 5) which have not been forbidden yet in the construction.
(Note that 2 was accidentally mentioned in the domain of the second permutation, due to
the choice of b̄ and ā. If it was not the case, we’d have to choose a large fresh D and map
2↔ D, just to make sure the extension is not forbidden.) Note that both neighbourhoods are
contained within the basic neighbourhood of (0, 1)↔ (1, 0).

Claim 3.5. Suppose the eth strategy is never initialised after stage s. Regardless of the
outcome, there exists an s′ ≥ s and a nice neighbourhood N e such that all the weaker priority
strategies (j > e) perform their actions within N e.

Proof of Claim. The strategy may never find a φ and a pair of witnesses at substage (2), in
which case all weaker priority strategies will work within x̄n ↔ ȳn. Otherwise, depending
on the outcome, it may either stay within N1 forever, or it may eventually switch to N2 and
never change the neighbourhood again. �

The basic module of the eth strategy makes sure that no element in the eventually stable
neighbourhood N e can be in Aut(Me) if Me is total. Note that, whenever a strategy is
initialised it can pick a nice neighbourhood within the part of S∞ that has not been forbidden
yet by the higher priority strategies. A straightforward inductive argument shows that for
every e, the eth strategy eventually never changes its neighbourhood that it keeps unforbidden,
and therefore every strategy is eventually never initialised.

The eth strategy ensures that some nice τe determined by its stable N e is the approximation
of P \ {Idω}. It follows from the construction that all elements of S∞ in (0, 1) ↔ (0, 1) that
do not extend τe will be eventually forbidden by the e’th strategy. Also, all neighbourhoods
outside (0, 1)↔ (0, 1) that do not contain Idω will be forbidden in the construction.

Note that the diameter of the nice eventually stable neighbourhood Ne is at most 2−e, and
N e+1 ⊂ N e for every e. It follows that the intersection of all these eventually stable N e is a
singleton whose only element is the limit of the ∆0

2 sequence (τe)e∈ω. The singleton describes
the only non-Id element Θ of the Π0

1 set P that we end up with. Note that τ2
e = Idsupp(τe),

for each e. It follows that Θ2 = Idω. Thus, P ∼= Z2. �
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4. Discrete Π0
1-presented groups and oligomorphic groups

We know that Z2 has a complicated Π0
1 presentation, but it is also clear that Z2 has a

“nice” presentation equal to Aut(M) for some computable M . This elementary observation is
a special case of the more general result: Every discrete Π0

1-presented group P is isomorphic
to Aut(M) for some computable structure M (Theorem 0.2(2)).

To prove the theorem we analyse the complexity of the orbit equivalence relation. Let G be
a subgroup of S∞. For all n < ω, the group G acts on the collection ωn of n-tuples of natural
numbers; the resulting orbit equivalence relation ∼G is defined on ω<ω by letting ā ∼G b̄ if
|ā| = |b̄| and there is some σ ∈ G such that σ(ā) = b̄. We prove the following:

Proposition 4.1. If G is a discrete, effectively closed subgroup of S∞, then ∼G is hyperarith-
metic.

(This means that for each n, the orbit equivalence relation for n-tuples is hyperarithmetic,
uniformly in n.)

Proposition 4.2. If G is an effectively closed subgroup of S∞ and ∼G is hyperarithmetic,
then there is a computable structure M such that G ∼= Aut(M).

Theorem 0.2(2) then follows. Proposition 4.2 is itself the conjunction of two lemmas.

Lemma 4.3. Every closed subgroup G of S∞ is equal to Aut(M) for some structure M
computable from ∼G.

Lemma 4.4. For every hyperarithmetic structure M there is a computable structure N such
that Aut(N) ∼= Aut(M).

Lemma 4.4 is a generalisation of Proposition 2.3. Say that M is ∆0
γ for some computable

ordinal γ. We use a generalisation of Fact 2.4 that allows us to code membership in a Σ0
α

class into an isomorphism type of one of two rigid linear orderings which satisfy the same
computable Πγ infinitary formulas but are separated thereafter. For example, we can produce
a copy of ωγ+1 if a Σ0

γ fact holds, and a copy of ωγ+2 otherwise; for our purposes, the complexity
does not need to be tight. See [GK02, Prop.4.12]. The argument then is the same as that of
Proposition 2.3.

Lemma 4.3 is an observation that the standard construction of a structure M such that
G = Aut(M) does in fact give us a structure computable from ∼G, see [Gao09]. For any n
and for every ∼G-equivalence class of n-tuples we define an n-ary relation which defines that
class. Closure of G is used to show that Aut(M) ⊆ G.

It remains to prove Proposition 4.1.

Proof of Proposition 4.1. Σ1
1 subsets of ωω have the perfect set property in a strongly effective

way: if a Σ1
1 set A does not have a perfect subset then all elements of A are hyperarithmetic,

and so by Spector’s Σ1
1 bounding, they are all computable from some 0(γ) for some fixed

computable ordinal γ. (See [Sac90], Thm. 6.2.III.)

By Proposition 1.3, G is a Π0
2 subset of ωω. If all elements of G are 0(γ)-computable, then

0(γ+2) computes a listing of the elements ofG; it then follows that∼G is 0(γ+3)-computable. �

This proves Theorem 0.2(2).

Remark 4.5. Note that if G is an effectively closed discrete group, then it has a hyperarithmetical presentation
in the sense of computable structure theory (upon the domain of ω). It is easy to see that this observation
gives a characterization of discrete effectively closed groups in terms of hyperarithmetically presented groups;
we outline the proof of the less obvious implication.

Let G be a countable (discrete) group. Use Cayley’s theorem and map g ∈ G to the permutation h 7→ gh,
call it σg. The image is discrete: σg is isolated by the neighbourhood e 7→ g. This way we obtain an H 5 S∞
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(topologically) isomorphic to G which is furthermore arithmetical in the diagram of G, in particular ∼H is
HYP. Lemma 4.3 gives a HYP M such that H ∼= Aut(M), and Lemma 4.4 allows to build a computable N
such that G ∼= H ∼= Aut(M) ∼= Aut(N).

4.1. Proof of Theorem 0.4. Recall that a (closed) oligomorphic group is a (closed) subgroup
of S∞ such that for every n there are only finitely many G-orbit equivalence classes of n-tuples.
We construct of Σ1

1, closed oligomorphic subgroup of S∞ for which ∼G is not hyperarithmetic.

We work in the admissible structure Lωck
1

. The idea is to use a cofinal ω-sequence 〈αn〉
in ωck1 which is approximated effectively (in the sense of Lωck

1
-computability) with only finitely

many changes to each value. We define the orbit equivalence relation ∼G rather than G.
We break up classes of n-tuples into two whenever we see a change in the value of αn; this
happens only finitely many times, so at the end we get only finitely many classes of n-tuples.
The entire equivalence relation is not hyperarithmetic, as we can recover the sequence 〈αn〉
from it. To ensure that the equivalence relation is indeed the orbit equivalence relation of a
closed group we need to ensure that it is invariant under permutations, taking subsequences,
and has the back-and-forth property. This can be done dynamically, but in fact it is easy to
give an explicit definition of the relation.

To the details. For a non-decreasing sequence k = 〈kn〉 of natural numbers define an
equivalence relation ∼k on ω<ω. For ā, b̄ ∈ ω<ω of the same length n, if they are both
injective, then we let ā ∼k b̄ if for every m < n there are at least n−m many i < n such that
ai = bi mod 2km . We then extend this to non-injective tuples in the obvious way.

We first observe:

• ∼k is an equivalence relation.
• If ā ∼k b̄ then for any subsequence ā′ of ā and b̄′ of b̄ chosen in the same way, ā′ ∼k b̄

′.
• ∼k is invariant under permutations: for any n-tuples ā, b̄ and permutation σ of n, if
ā ∼k b̄ then ā ◦ σ ∼k b̄ ◦ σ.
• ∼k has the back and forth property: if ā ∼k b̄ then for all c < ω there is some d < ω

such that āc ∼k b̄d.
• For every n there are only finitely many ∼k-equivalence classes of n-tuples.

We then let Gk be the collection of all f ∈ S∞ such that for all ā and b̄, if f(ā) = b̄ then
ā ∼k b̄. It is a closed subgroup of S∞; the properties just listed ensure that ∼k is the orbit
equivalence relation of the action of Gk, and that this action is oligomorphic.

We now start to work effectively. Since the Σ1 projectum of Lωck
1

is ω, there is a ∆2(Lωck
1

)

increasing sequence 〈αn〉n<ω which is cofinal in ωck1 ; see [Sac90] for an excellent exposition of
higher recursion theory. In fact, 〈αn〉 has a finite-change approximation (see [BGM17]): there
is a ∆1(Lωck

1
) array (that is, a Lωck

1
-computable array) 〈αn,s〉n<ω,s<ωck

1
such that writing αn,ωck

1

for αn, we have:

• For all limit ordinals s ≤ ωck1 , for all n, αn,s = limt→s αn,t; and

• For every n < ω, there are only finitely many stages s < ωck1 such that αn,s 6= αn,s+1.

Given such a sequence we define, for each s ≤ ωck1 ,

kn,s =
∑
m≤n

#{t < s : αm,t 6= αm,t+1}.

this defines sequences ks for s ≤ ωck1 . Our final equivalence relation is ∼k=∼k
ωck

1

. The fact

that we used powers of 2 means that as for t < s, for all n, kn,t ≤ kn,s, the equivalence relation
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∼kn,t refines the equivalence relation ∼kn,s . This shows that ∼k is Π1(Lωck
1

), that is, it is Σ1
1.

It follows that Gk is Σ1
1 as well.

The final relation ∼k=∼k
ωck

1

is not hyperarithmetic: we can see that ω∼k
1 > ωck1 , as in an

effective fashion over Lω∼k
1

[∼k] we can recover 〈αn〉: for all n < ω and s < ωck1 , if the number

of ∼ks-equivalence classes of n-tuples is the same as that of ∼k, then αn = αn,s.
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